A Double Residual Compression Algorithm for Efficient Distributed Learning

Xiaorui Liu

Joint work with Yao Li, Jiliang Tang, Ming Yan

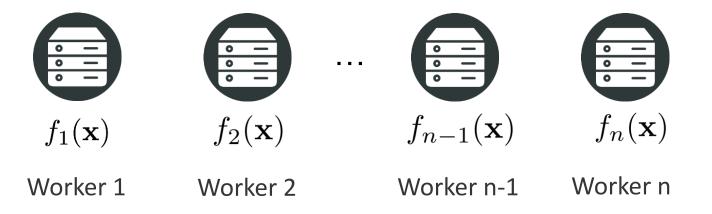
Michigan State University

June 15th, AISTATS 2020

Distributed Learning

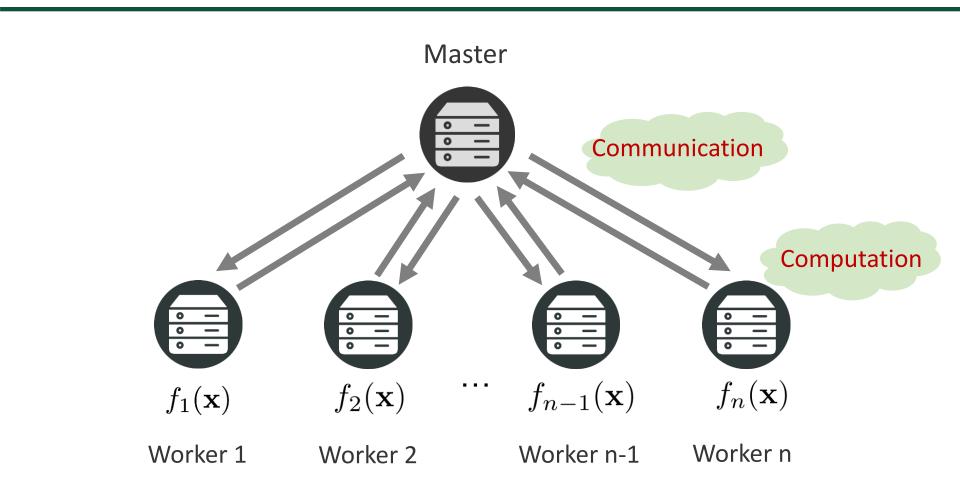
Problem

$$\underset{\mathbf{x}\in\mathbb{R}^{d}}{\operatorname{minimize}} f(\mathbf{x}) + R(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{E}_{\xi\sim\mathcal{D}_{i}}[\ell(\mathbf{x},\xi)]}_{:=f_{i}(\mathbf{x})} + R(\mathbf{x})$$



Data is partitioned at different worker machines

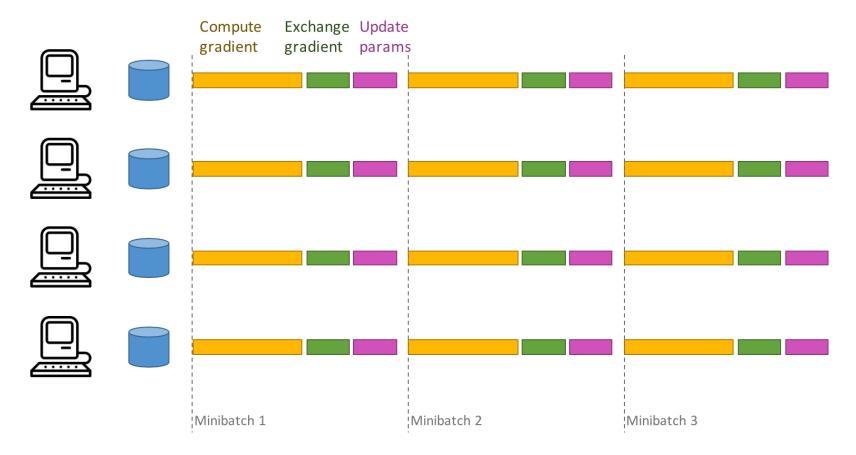
Parallel SGD



- Gradient reduce & model (or averaged gradient) broadcasting
- Widely supported and used in PyTorch/TensorFlow/MXNET ...

Parallel SGD

Hopefully



D. Alistarh's Tutorial at PODC 2018

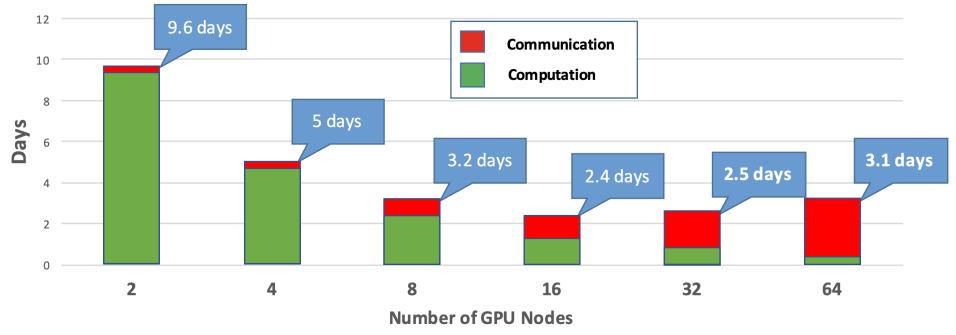
Big model



D. Alistarh's Tutorial at PODC 2018

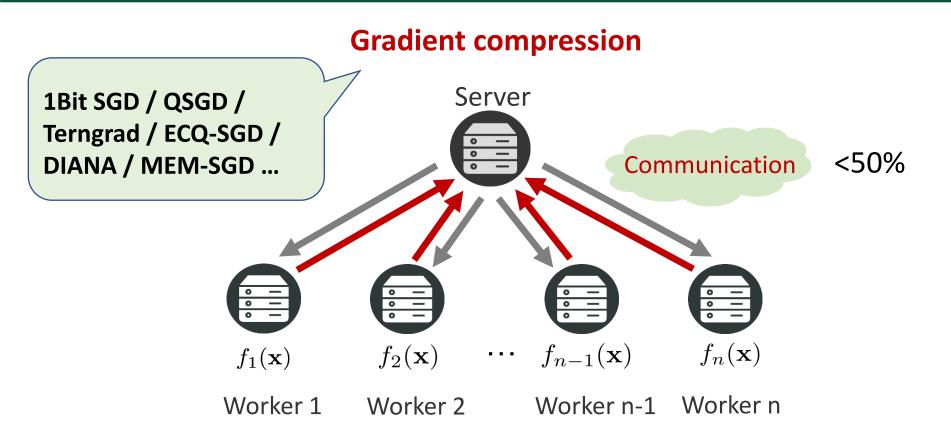
Big network

Time to Train Model



D. Alistarh's Tutorial at PODC 2018

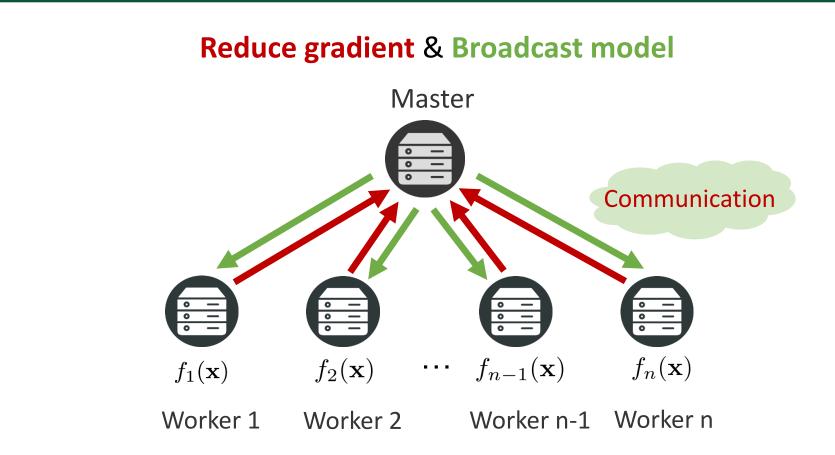
Parallel SGD



Most algorithms either

- (1) directly broadcast the full-precision model or
- (2) allgather the compressed gradients

DOuble REsidual compression (DORE)



Worker side: gradient residual compression + running average
 Server side: model residual compression + error compensation

Algorithm DORE

DORE with R(X)

Input: Stepsize $\alpha, \beta, \gamma, \eta$, initialize $\mathbf{h}^0 = \mathbf{h}_i^0 = \mathbf{0}^d$, $\hat{\mathbf{x}}_i^0 = \hat{\mathbf{x}}^0, \forall i \in \{1, \dots, n\}.$ for $k = 1, 2, \dots, K - 1$ do

For each worker $\{i = 1, 2, \cdots, n\}$: For the master: Sample \mathbf{g}_i^k such that $\mathbb{E}[\mathbf{g}_i^k | \hat{\mathbf{x}}_i^k] = \nabla f_i(\hat{\mathbf{x}}_i^k)$ Receive $\{\hat{\Delta}_i^k\}$ from workers $\hat{\Delta}^k = 1/n \sum_{i=1}^n \hat{\Delta}^k_i$ Gradient residual: $\Delta_i^k = \mathbf{g}_i^k - \mathbf{h}_i^k$ $\hat{\mathbf{g}}^k = \mathbf{h}^k + \hat{\Delta}^k \{ = \frac{1}{n} \sum_{i=1}^n \hat{\mathbf{g}}_i^k \}$ Compression: $\hat{\Delta}_i^k = Q(\Delta_i^k)$ $\mathbf{x}^{k+1} = \mathbf{prox}_{\gamma R}(\hat{\mathbf{x}}^k - \gamma \hat{\mathbf{g}}^k)$ $\mathbf{h}_{i}^{k+1} = \mathbf{h}_{i}^{k} + \alpha \hat{\Delta}_{i}^{k}$ $\mathbf{h}^{k+1} = \mathbf{h}^k + \alpha \hat{\Delta}^k$ $\{ \hat{\mathbf{g}}_{i}^{k} = \mathbf{h}_{i}^{k} + \hat{\Delta}_{i}^{k} \}$ Sent $\hat{\Delta}_i^k$ to the master Model residual: $\mathbf{q}^k = \mathbf{x}^{k+1} - \mathbf{x}^{k+1}$ Receive $\hat{\mathbf{q}}^k$ from the master $\hat{\mathbf{x}}^k + \eta \mathbf{e}^k$ $\hat{\mathbf{x}}_{i}^{k+1} = \hat{\mathbf{x}}_{i}^{k} + \beta \hat{\mathbf{q}}^{k}$ Compression: $\hat{\mathbf{q}}^k = Q(\mathbf{q}^k)$ $\mathbf{e}^{k+1} = \mathbf{q}^k - \hat{\mathbf{q}}^k$

 $\hat{\mathbf{x}}^{k+1} = \hat{\mathbf{x}}^k + \beta \hat{\mathbf{q}}^k$

Broadcast $\hat{\mathbf{q}}^k$ to workers

end for Output: $\hat{\mathbf{x}}^{K}$ or any $\hat{\mathbf{x}}_{i}^{K}$

Worker side: gradient residual compression + running average

Intuition 1: issue of simple gradient compression

$$\begin{aligned} \mathbf{x} &= \mathbf{x}^* - \frac{\gamma}{n} \sum_{i=1}^n Q(\nabla f_i(\mathbf{x}^*)) \\ &= \mathbf{x}^* - \frac{\gamma}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^*) + \frac{\gamma}{n} \sum_{i=1}^n (\nabla f_i(\mathbf{x}^*) - Q(\nabla f_i(\mathbf{x}^*))). \end{aligned}$$

- The convergence requires either
 (1) diminishing stepsize γ or (2) diminishing compression error
- Error compensation on the worker side doesn't solve this issue

Worker side: gradient residual compression + running average

Intuition 2: Gradient for smooth function changes smoothly

- Keep a state **h** to track the local gradient
- Residual between current gradient and **h** vanishes
- Recover the estimated gradient on server side

$$\begin{aligned} \mathbf{x} &= \mathbf{x}^* - \frac{\gamma}{n} \sum_{i=1}^n \left(\mathbf{h}_i + Q(\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i) \right) \\ &= \mathbf{x}^* - \frac{\gamma}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^*) + \frac{\gamma}{n} \sum_{i=1}^n \left(\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i - Q(\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i) \right) \\ &= \mathbf{u}^* - \frac{\gamma}{n} \sum_{i=1}^n \left(\nabla f_i(\mathbf{x}^*) + \frac{\gamma}{n} \sum_{i=1}^n \left(\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i \right) - \mathbf{h}_i \right) \end{aligned}$$

C-contraction compressor: $\mathbb{E} \|\mathbf{v} - Q(\mathbf{v})\|^2 \le C \|\mathbf{v}\|^2, \quad \forall \mathbf{v} \in \mathbb{R}^d$

Mishchenko et al. 19'

Worker side: gradient residual compression + running average

Intuition 3: Achieve vanishing residual by running average

$$\mathbf{h}_{i}^{k+1} = (1-\alpha)\mathbf{h}_{i}^{k} + \alpha \left(\mathbf{h}_{i}^{k} + Q(\nabla f_{i}(\mathbf{x}^{k}) - \mathbf{h}_{i}^{k})\right)$$
$$= \mathbf{h}_{i}^{k} + \alpha Q(\nabla f_{i}(\mathbf{x}^{k}) - \mathbf{h}_{i}^{k})$$

With unbiasedness compression $\mathbb{E}Q(\mathbf{v}) = \mathbf{v}$ have

$$\mathbb{E}_Q \mathbf{h}_i^{k+1} = (1-lpha) \mathbf{h}_i^k + lpha
abla f_i(\mathbf{x}^k)$$

such that $\mathbf{h}_i^k o f_i(\mathbf{x}^*)$ once $\mathbf{x}^k o \mathbf{x}^*$

Mishchenko et al. 19'

Server side: model residual compression + error compensation

Intuition 1: model changes slowly when approaching optima

• Model residual compression will only incur diminishing error

Intuition 2: compensate the compression error to next iteration

• Consider the error as delay and maintain it for faster convergence

Remark:

To prove the convergence, most works using error compensation require the bounded gradient assumption, but DORE doesn't.

Convergence analysis

Assumption on the compression

Assumption

The stochastic compression operator $Q : \mathbb{R}^d \to \mathbb{R}^d$ is unbiased, i.e., $\mathbb{E}Q(\mathbf{x}) = \mathbf{x}$ and satisfies

 $\mathbb{E} \|Q(\mathbf{x}) - \mathbf{x}\|^2 \le C \|\mathbf{x}\|^2,$

for a nonnegative constant C that is independent of \mathbf{x} .

- Random Quantization
- Random Sparsification
- P-norm Quantization

•

Assumption

Each worker node samples an unbiased estimator of the gradient stochastically with bounded variance, i.e., for $i = 1, 2, \dots, n$ and $\forall \mathbf{x} \in \mathbb{R}^d$,

$$\mathbb{E}[\mathbf{g}_i|\mathbf{x}] = \nabla f_i(\mathbf{x}), \quad \mathbb{E}\|\mathbf{g}_i - \nabla f_i(\mathbf{x})\|^2 \le \sigma_i^2,$$

where \mathbf{g}_i is the estimator of ∇f_i at \mathbf{x} . In addition, we define $\sigma^2 = \frac{1}{n} \sum_{i=1}^n \sigma_i^2$.

Assumption

Each f_i is *L*-Lipschitz differentiable, i.e., for $i = 1, 2, \dots, n$ and $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, $f_i(\mathbf{x}) \leq f_i(\mathbf{y}) + \langle \nabla f_i(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2$.

Convergence analysis

Theorem

Choose parameters such that

$$\beta = \frac{1}{C+1}, \quad \alpha = \frac{1}{2(C+1)},$$
$$\gamma = \eta = \frac{1}{12L(1+2C/n)(1+\sqrt{K/n})}$$

Then we have

$$\frac{1}{K}\sum_{k=1}^{K} \mathbb{E} \|\nabla f(\hat{\mathbf{x}}^k)\|^2 \lesssim \frac{1}{K} + \frac{1}{\sqrt{Kn}}.$$

- Sublinear convergence to stationary points for nonconvex cases
- Linear speedup w.r.t. number of workers

Convergence analysis

Assumption

Each
$$f_i$$
 is μ -strongly convex ($\mu \ge 0$), i.e., for $i=1,2,\cdots,n$ and $orall {f x},{f y}\in \mathbb{R}^d$,

$$f_i(\mathbf{x}) \geq f_i(\mathbf{y}) + \langle
abla f_i(\mathbf{y}), \mathbf{x} - \mathbf{y}
angle + rac{\mu}{2} \|\mathbf{x} - \mathbf{y}\|^2.$$

Theorem

Choose parameters such that

$$\begin{split} 0 &< \beta \leq \frac{1}{C+1} \\ \frac{1-\sqrt{1-\delta}}{2(C+1)} \leq \alpha \leq \frac{1+\sqrt{1-\delta}}{2(C+1)}, \\ \eta &< \min\left(\frac{\sqrt{C^2+4(1-(C+1)\beta)}-C}{2C}, \ \frac{4\mu L}{(\mu+L)^2\left(1+\frac{4C(C+1)}{n\delta}\alpha\right)-4\mu L}\right), \\ \frac{\eta(\mu+L)}{2(1+\eta)\mu L} \leq \gamma \leq \frac{2}{\left(1+\frac{4C(C+1)}{n\delta}\alpha\right)(\mu+L)}. \end{split}$$

Then we have

$$\mathbf{V}^{k+1} \leq \rho^k \mathbf{V}^1 + \frac{(1+\eta)\left(1+n\frac{4C(C+1)}{n\delta}\alpha\right)}{n(1-\rho)}\beta\gamma^2\sigma^2,$$

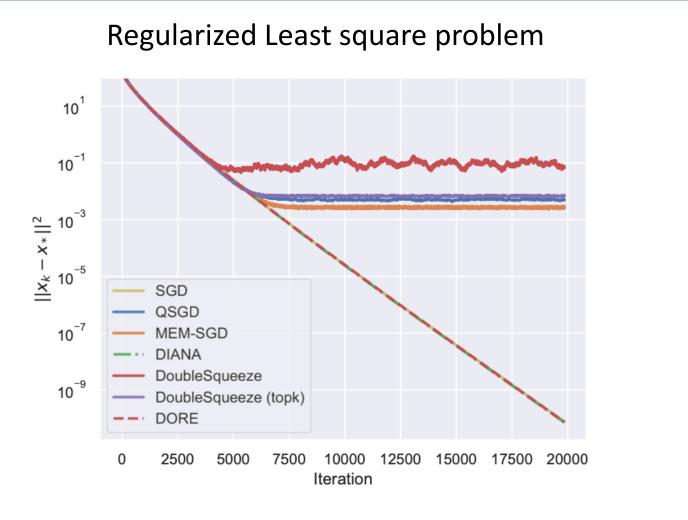
for some $\rho < 1$, and \mathbf{V}^k measures the convergence of $\mathbf{q}^k \to \mathbf{0}$, $\hat{\mathbf{x}}^k \to \mathbf{x}^*$, and $\mathbf{h}_i^k \to \nabla f_i(\mathbf{x}^*)$.

Data Science and Engineering Lab

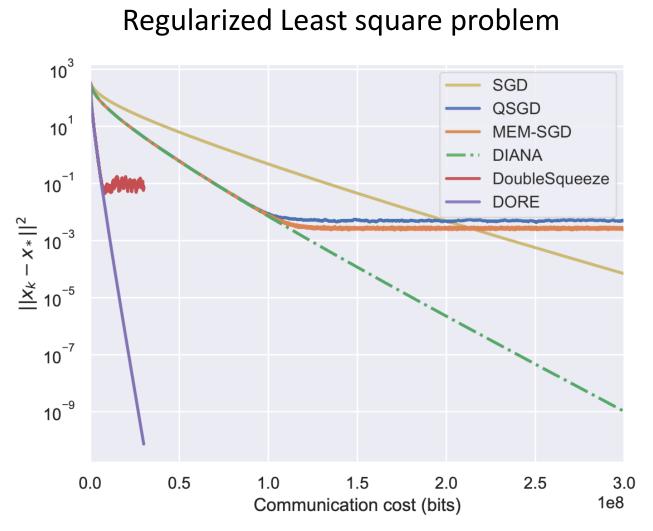
Theoretical comparison with related works

Algorithm	Compression	Compress. Model	Linear	Nonconvex Rate
SGD	No	No	\checkmark	$\frac{1}{\sqrt{Kn}} + \frac{1}{K}$
QSGD	Grad	2-norm	N/A	$\frac{1}{K} + B$
MEM-SGD	Grad	k-contraction	N/A	N/A
DIANA	Grad	<i>p</i> -norm	\checkmark	$\frac{1}{\sqrt{Kn}} + \frac{1}{K}$
DoubleSqueeze	Grad + Model	Bdd Variance	N/A	$\frac{1}{\sqrt{Kn}} + \frac{1}{K^{2/3}} + \frac{1}{K}$
DORE	Grad + Model	Assum. 1	\checkmark	$\frac{1}{\sqrt{Kn}} + \frac{1}{K}$

Most algorithms, except DIANA and DORE, requires bounded gradient assumption and incur extra error.

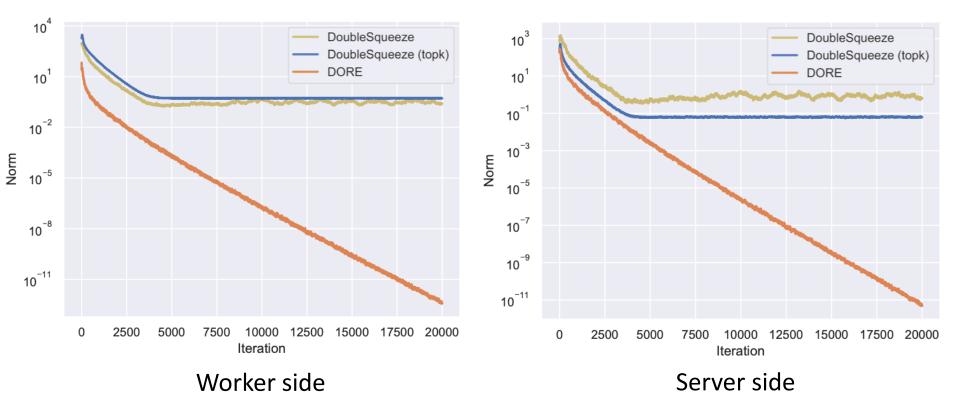


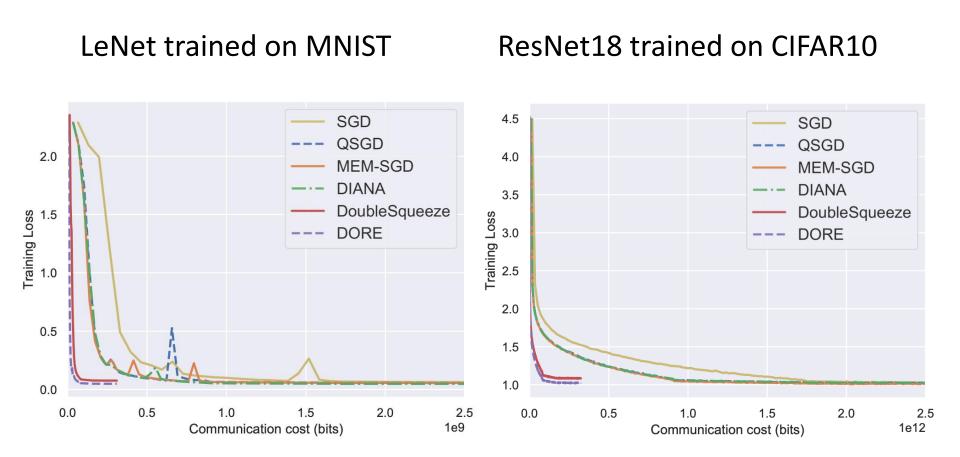
$$\mathbf{V}^{k+1} \le \rho^k \mathbf{V}^1 + \frac{(1+\eta)\left(1+n\frac{4C(C+1)}{n\delta}\alpha\right)}{n(1-\rho)}\beta\gamma^2\sigma^2 \qquad \text{full-gradient where} \quad \sigma = 0$$



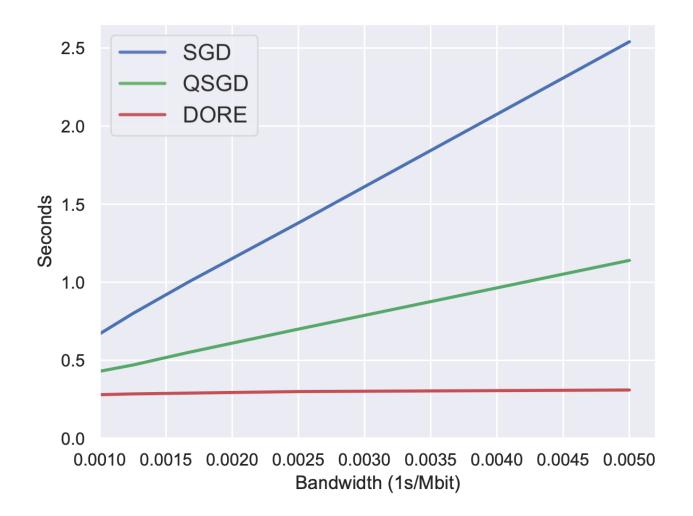
Distance to optimum vs communication bits

Compression error





Train loss vs communication bits



Time cost per iteration vs network bandwidth

- DORE reduces over 95% of the communication cost through the double residual compression;
- Provide a sublinear convergence rate in the nonconvex case and achieve linear speedup;
- Provide a linear convergence analysis to the neighborhood of the optimum for smooth and strongly convex functions;
- DORE achieves state-of-art performance both theoretically and empirically;
- We hope to see more applications or extensions of DORE in bandwidth limited settings such as federated learning.

