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Distributed Learning

Problem

…

Worker 1 Worker 2 Worker n-1 Worker n

Data is partitioned at different worker machines
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Parallel SGD

• Gradient reduce & model (or averaged gradient) broadcasting
• Widely supported and used in PyTorch/TensorFlow/MXNET …

…

Worker 1 Worker 2 Worker n-1 Worker n

Master

Computation

Communication
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Parallel SGD

D. Alistarh’s Tutorial at PODC 2018

Hopefully
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Big model

Parallel SGD

D. Alistarh’s Tutorial at PODC 2018
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Big network

Parallel SGD

D. Alistarh’s Tutorial at PODC 2018
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Gradient compression

Parallel SGD

…

Worker 1 Worker 2 Worker n-1 Worker n

Server

Communication

1Bit SGD / QSGD / 
Terngrad / ECQ-SGD / 
DIANA / MEM-SGD …

Most algorithms either 
（1) directly broadcast the full-precision model or 
（2) allgather the compressed gradients 

<50%
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Reduce gradient & Broadcast model

DOuble REsidual compression (DORE)

…

Worker 1 Worker 2 Worker n-1 Worker n

Master

Communication

➢ Worker side: gradient residual compression + running average
➢ Server side: model residual compression + error compensation
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Algorithm DORE

DORE with R(X)
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Intuition 1: issue of simple gradient compression

➢ Worker side: gradient residual compression + running average

• The convergence requires either 
(1) diminishing stepsize 𝛾 or (2) diminishing compression error

Algorithm DORE

• Error compensation on the worker side doesn’t solve this issue
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➢ Worker side: gradient residual compression + running average

Intuition 2: Gradient for smooth function changes smoothly

• Keep a state h to track the local gradient
• Residual between current gradient and h vanishes
• Recover the estimated gradient on server side

C-contraction compressor:

Mishchenko et al. 19’ 

Algorithm DORE
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➢ Worker side: gradient residual compression + running average

Intuition 3: Achieve vanishing residual by running average

With unbiasedness compression , we have

such that once

Mishchenko et al. 19’ 

Algorithm DORE
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Intuition 1: model changes slowly when approaching optima

➢ Server side: model residual compression + error compensation

Intuition 2: compensate the compression error to next iteration

• Model residual compression will only incur diminishing error

• Consider the error as delay and maintain it for faster convergence

Remark:
To prove the convergence, most works using error compensation
require the bounded gradient assumption, but DORE doesn’t.

Algorithm DORE
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Assumption on the compression

Convergence analysis

• Random Quantization
• Random Sparsification
• P-norm Quantization
• …
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Convergence analysis
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Convergence analysis

• Sublinear convergence to stationary points for non-
convex cases

• Linear speedup w.r.t. number of workers
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Convergence analysis
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Convergence analysis

Theoretical comparison with related works

Most algorithms, except DIANA and DORE, requires bounded
gradient assumption and incur extra error.
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Numerical experiment

Regularized Least square problem

full-gradient where
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Numerical experiment

Regularized Least square problem

Distance to optimum vs communication bits
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Numerical experiment

Compression error

Worker side Server side
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Numerical experiment

LeNet trained on MNIST ResNet18 trained on CIFAR10

Train loss vs communication bits
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Numerical experiment

Time cost per iteration vs network bandwidth
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Conclusion

• DORE reduces over 95% of the communication cost through the double
residual compression;

• Provide a sublinear convergence rate in the nonconvex case and achieve
linear speedup;

• Provide a linear convergence analysis to the neighborhood of the
optimum for smooth and strongly convex functions;

• DORE achieves state-of-art performance both theoretically and
empirically;

• We hope to see more applications or extensions of DORE in bandwidth
limited settings such as federated learning.


